If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=10Y^2+8Y-3
We move all terms to the left:
-(10Y^2+8Y-3)=0
We get rid of parentheses
-10Y^2-8Y+3=0
a = -10; b = -8; c = +3;
Δ = b2-4ac
Δ = -82-4·(-10)·3
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{46}}{2*-10}=\frac{8-2\sqrt{46}}{-20} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{46}}{2*-10}=\frac{8+2\sqrt{46}}{-20} $
| 2(x-5)-14=-22 | | 16-x=32 | | x+2x^2=4 | | 5x-15+4x=1 | | 11x=50-9x/10 | | 1x+3=6/2 | | 2(x-5)-14=22 | | 0.667x+6=0.5x+0.25x | | 6(w-5)-3w=+10 | | -2(x-19)=-28 | | n+8/5=7 | | 2(3x-4)-4(x-2)=8 | | -68=-6(8v-2)+8(1-5v) | | 10/x=45 | | x^2=(1-x)/6 | | 4(x+5)+2=14 | | 2(20+2r)=80 | | 0.99m+0.07m=1.83m | | x^2=(1-6x/6 | | 6m+5=19(m=(-2)) | | 2(3x-4)-(x-5)=31 | | 9m-4m=45 | | |6x+12|=24 | | 2(x+3)=8(2x-6) | | -15y-26=0 | | 867+x=938 | | 8d=5 | | 48-6=x | | 7(x+10)=-2(-11x+7)+9 | | 4z+9z=39 | | 2(12+2r)=80 | | X^2-12x+12x+21=0 |